Difference between revisions of "1997 USAMO Problems"
(→Problem 2) |
|||
| Line 10: | Line 10: | ||
== Problem 2 == | == Problem 2 == | ||
Let <math>ABC</math> be a triangle, and draw isosceles triangles <math>BCD, CAE, ABF</math> externally to <math>ABC</math>, with <math>BC, CA, AB</math> as their respective bases. Prove that the lines through <math>A,B,C</math> perpendicular to the lines <math>\overleftrightarrow{EF},\overleftrightarrow{FD},\overleftrightarrow{DE}</math>, respectively, are concurrent. | Let <math>ABC</math> be a triangle, and draw isosceles triangles <math>BCD, CAE, ABF</math> externally to <math>ABC</math>, with <math>BC, CA, AB</math> as their respective bases. Prove that the lines through <math>A,B,C</math> perpendicular to the lines <math>\overleftrightarrow{EF},\overleftrightarrow{FD},\overleftrightarrow{DE}</math>, respectively, are concurrent. | ||
| + | |||
| + | == Problem 3 == | ||
| + | Prove that for any integer <math>n</math>, there exists a unique polynomial <math>Q</math> with coefficients in <math>\{0,1,...,9\}</math> such that <math>Q(-2)=Q(-5)=n</math>. | ||
Revision as of 07:57, 1 July 2011
Problem 1
Let
be the prime numbers listed in increasing order, and let
be a real number between
and
. For positive integer
, define
where
denotes the fractional part of
. (The fractional part of
is given by
where
is the greatest integer less than or equal to
.) Find, with proof, all
satisfying
for which the sequence
eventually becomes
.
Problem 2
Let
be a triangle, and draw isosceles triangles
externally to
, with
as their respective bases. Prove that the lines through
perpendicular to the lines
, respectively, are concurrent.
Problem 3
Prove that for any integer
, there exists a unique polynomial
with coefficients in
such that
.