Difference between revisions of "2003 USAMO Problems/Problem 5"
(→Solution) |
m (→Solution) |
||
| Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
| − | |||
| − | + | Since all terms are homogeneous, we may assume WLOG that <math>a + b + c = 3</math>. | |
Then the LHS becomes <math>\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} = \sum \frac {a^2 + 6a + 9}{3a^2 - 6a + 9} = \sum \left(\frac {1}{3} + \frac {8a + 6}{3a^2 - 6a + 9}\right)</math>. | Then the LHS becomes <math>\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} = \sum \frac {a^2 + 6a + 9}{3a^2 - 6a + 9} = \sum \left(\frac {1}{3} + \frac {8a + 6}{3a^2 - 6a + 9}\right)</math>. | ||
| Line 12: | Line 11: | ||
Notice <math>3a^2 - 6a + 9 = 3(a - 1)^2 + 6 \ge 6</math>, so <math>\frac {8a + 6}{3a^2 - 6a + 9} \le \frac {8a + 6}{6}</math>. | Notice <math>3a^2 - 6a + 9 = 3(a - 1)^2 + 6 \ge 6</math>, so <math>\frac {8a + 6}{3a^2 - 6a + 9} \le \frac {8a + 6}{6}</math>. | ||
| − | So <math>\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} \le \sum \left(\frac {1}{3} + \frac {8a + 6}{6}\right) = 1 + \frac {8(a + b + c) + 18}{6} = 8</math> as desired. | + | So <math>\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} \le \sum \left(\frac {1}{3} + \frac {8a + 6}{6}\right) = 1 + \frac {8(a + b + c) + 18}{6} = 8</math>, as desired. |
| − | |||
| − | |||
| − | |||
== Resources == | == Resources == | ||
Revision as of 19:32, 13 April 2012
Problem
Let
,
,
be positive real numbers. Prove that
Solution
Since all terms are homogeneous, we may assume WLOG that
.
Then the LHS becomes
.
Notice
, so
.
So
, as desired.