Difference between revisions of "1991 AHSME Problems/Problem 7"
| Line 1: | Line 1: | ||
| − | + | ==Problem== | |
| + | If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math> | ||
(A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math> | (A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math> | ||
| + | |||
| + | ==Solution== | ||
| + | <math>\frac{a+b}{a-b}= </math>\frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}<math>, so the answer is </math>\boxed{B}$. | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 17:39, 20 April 2014
Problem
If
,
and
, then
(A)
(B)
(C)
(D)
(E)
Solution
\frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}
\boxed{B}$.
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.