Difference between revisions of "2013 AMC 10A Problems/Problem 12"
(→Problem) |
|||
| Line 27: | Line 27: | ||
\textbf{(D) }60\qquad | \textbf{(D) }60\qquad | ||
\textbf{(E) }72\qquad</math> | \textbf{(E) }72\qquad</math> | ||
| + | [[Category: Introductory Geometry Problems]] | ||
==Solution== | ==Solution== | ||
Revision as of 10:50, 13 August 2014
Problem
In
,
and
. Points
and
are on sides
,
, and
, respectively, such that
and
are parallel to
and
, respectively. What is the perimeter of parallelogram
?
Solution
Note that because
and
are parallel to the sides of
, the internal triangles
and
are similar to
, and are therefore also isosceles triangles.
It follows that
. Thus,
.
Since opposite sides of parallelograms are equal, the perimeter is
.
See Also
| 2013 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 11 |
Followed by Problem 13 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2013 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 8 |
Followed by Problem 10 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.