Difference between revisions of "1989 AHSME Problems/Problem 29"
m (→Problem) |
|||
| Line 2: | Line 2: | ||
What is the value of the sum <math>S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?</math> | What is the value of the sum <math>S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?</math> | ||
| − | {{ | + | |
| + | (A) <math>-2^{50}</math> (B) <math>-2^{49}</math> (C) 0 (D) <math>2^{49}</math> (E) <math>2^{50}</math> | ||
==Solution== | ==Solution== | ||
Revision as of 13:24, 7 October 2014
Problem
What is the value of the sum
(A)
(B)
(C) 0 (D)
(E)
Solution
By the Binomial Theorem,
.
Using the fact that
,
,
,
, and
, the sum becomes:
.
So,
.
Using De Moivre's Theorem,
.
And finally,
.
See also
| 1989 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 28 |
Followed by Problem 30 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.