Difference between revisions of "1988 AHSME Problems/Problem 14"
(Created page with "==Problem== For any real number a and positive integer k, define <math>{a \choose k} = \frac{a(a-1)(a-2)\cdots(a-(k-1))}{k(k-1)(k-2)\cdots(2)(1)}</math> What is <math>{-\frac...") |
(→Solution: Add one) |
||
| Line 17: | Line 17: | ||
==Solution== | ==Solution== | ||
| + | We expand both the numerator and the denominator. | ||
| + | <cmath>\begin{align*} | ||
| + | \binom{-\frac{1}{2}}{100}\div\binom{\frac{1}{2}}{100} | ||
| + | &= \frac{ | ||
| + | \dfrac{ | ||
| + | (-\frac{1}{2}) | ||
| + | (-\frac{1}{2} - 1) | ||
| + | (-\frac{1}{2} - 2) | ||
| + | \cdots | ||
| + | (-\frac{1}{2} - (100 - 1)) | ||
| + | }{\cancel{(100)(99)\cdots(1)}} | ||
| + | }{ | ||
| + | \dfrac{ | ||
| + | (\frac{1}{2}) | ||
| + | (\frac{1}{2} - 1) | ||
| + | (\frac{1}{2} - 2) | ||
| + | \cdots | ||
| + | (\frac{1}{2} - (100 - 1)) | ||
| + | }{\cancel{(100)(99)\cdots(1)}} | ||
| + | } \\ | ||
| + | &= \frac{ | ||
| + | (-\frac{1}{2}) | ||
| + | (-\frac{1}{2} - 1) | ||
| + | (-\frac{1}{2} - 2) | ||
| + | \cdots | ||
| + | (-\frac{1}{2} - 99) | ||
| + | }{ | ||
| + | (\frac{1}{2}) | ||
| + | (\frac{1}{2} - 1) | ||
| + | (\frac{1}{2} - 2) | ||
| + | \cdots | ||
| + | (\frac{1}{2} - 99) | ||
| + | } | ||
| + | \end{align*}</cmath> | ||
| + | |||
| + | Now, note that <math>-\frac{1}{2}-1=\frac{1}{2}-2</math>, <math>-\frac{1}{2}-2=\frac{1}{2}-3</math>, etc.; in essence, <math>-\frac{1}{2}-n=\frac{1}{2}-(n+1)</math>. We can then simplify the numerator and cancel like terms. | ||
| + | |||
| + | <cmath>\begin{align*} | ||
| + | \frac{ | ||
| + | (-\frac{1}{2}) | ||
| + | (-\frac{1}{2} - 1) | ||
| + | (-\frac{1}{2} - 2) | ||
| + | \cdots | ||
| + | (-\frac{1}{2} - 99) | ||
| + | }{ | ||
| + | (\frac{1}{2}) | ||
| + | (\frac{1}{2} - 1) | ||
| + | (\frac{1}{2} - 2) | ||
| + | \cdots | ||
| + | (\frac{1}{2} - 99) | ||
| + | } | ||
| + | &= \frac{ | ||
| + | \cancel{(\frac{1}{2} - 1)} | ||
| + | \cancel{(\frac{1}{2} - 2)} | ||
| + | \cancel{(\frac{1}{2} - 3)} | ||
| + | \cdots | ||
| + | (\frac{1}{2} - 100) | ||
| + | }{ | ||
| + | (\frac{1}{2}) | ||
| + | \cancel{(\frac{1}{2} - 1)} | ||
| + | \cancel{(\frac{1}{2} - 2)} | ||
| + | \cdots | ||
| + | \cancel{(\frac{1}{2} - 99)} | ||
| + | } \\ | ||
| + | &= \frac{\frac{1}{2}-100}{\frac{1}{2}} \\ | ||
| + | &= \frac{-\frac{199}{2}}{\frac{1}{2}} \\ | ||
| + | &= \boxed{\textbf{(E) } -199.} | ||
| + | \end{align*}</cmath> | ||
== See also == | == See also == | ||
Revision as of 15:00, 16 November 2017
Problem
For any real number a and positive integer k, define
What is
?
Solution
We expand both the numerator and the denominator.
Now, note that
,
, etc.; in essence,
. We can then simplify the numerator and cancel like terms.
See also
| 1988 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 13 |
Followed by Problem 15 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.