2020 AMC 10A Problems/Problem 24
Problem
Let be the least positive integer greater than
for which
What is the sum of the digits of
?
Solution 1
We know that . Hence,
. Subtracting the
equations,
. Letting
,
. Taking
\alpha \equiv{14} \pmod{40}
n=21\alpha -57 >1000 \implies \alpha \geq 51
\alpha =54
(\alpha,3)=1
\alpha = 94
\boxed{1917}
\alpha = 40k+14 \equiv{0} \pmod{3}
k \equiv{1} \pmod{3}
k \equiv{0,2} \pmod{3}$, giving us our answer.
~Prabh1512
== Solution 2==
We know that$ (Error compiling LaTeX. Unknown error_msg)gcd(63, n+120)=21n+120\equiv0\pmod {21}
n\equiv6\pmod {21}
n+63\equiv0\pmod {60}
n\equiv-3\pmod {60}
n\equiv237\pmod {420}
1000
n=1077
gcd(63, n+120) =63
gcd(n+63, 120) =120
{1077+120}\equiv0\pmod {63}
n=1077+420=1497
{1497+63}\equiv0\pmod {120}
420
n
n=1497+420=1917
1+9+1+7=\boxed{\textbf{(C) }18}$.
==Solution 3 (bashing)==
We are given that$ (Error compiling LaTeX. Unknown error_msg)\gcd(63, n+120)=21\gcd(n+63,120) = 60
n+120
21
63
n+63
n+120
21
n
1134
n=1014
21
1917
\boxed{\textbf{(C) } 18}$.
-Midnight
==Solution 4 (bashing but worse)==
Assume that$ (Error compiling LaTeX. Unknown error_msg)nn = abcd
a
b
c
d
a * b * c * d
gcd(63, n + 120) = 21
gcd(n + 63, 120) = 60
d = 7
n
12 + abc \equiv0\pmod {7}
7 + abc\equiv0\pmod {6}
(x, y)
x
5
6
12 + abc
42*j + 35 = x
7 + abc
42*j + 30 = y
j
abc
n = abc7
abc > 100
abc = 191
n = 1917
\boxed{\textbf{(C) } 18}$.
~ Baolan
==Solution 5==
The conditions of the problem reduce to the following.$ (Error compiling LaTeX. Unknown error_msg)n+120 = 21kgcd(k,3) = 1
n+63 = 60l
gcd(l,2) = 1
21k - 60l = 57
k = 20a + 17
l = 7a + 5
n
1000
k > 53
l > 17
l = 33
k = 97
1917 \implies 1+9+1+7=
\boxed{\textbf{(C) } 18}$.
Edited by ~fastnfurious1
==Solution 6==
You can first find that n must be congruent to$ (Error compiling LaTeX. Unknown error_msg)6\equiv0\pmod {21}57\equiv0\pmod {60}
n=21x+6
n=60y+57
1+9+1+7 = \boxed{\textbf{(C) } 18}$.-happykeeper
==Solution 7 (Reverse Euclidean Algorithm)==
We are given that$ (Error compiling LaTeX. Unknown error_msg)\gcd(63, n+120) =21\gcd(n+63, 120)=60.$By applying the Euclidean algorithm, but in reverse, we have <cmath>\gcd(63, n+120) = \gcd(63, n+120 + 63) = \gcd(63, n+183) = 21</cmath> and <cmath>\gcd(n+63, 120) = \gcd(n+63 + 120, 120) = \gcd(n+183, 120) = 60.</cmath>
We now know that$ (Error compiling LaTeX. Unknown error_msg)n+18321
60,
\text{lcm}(21, 60) = 420.
n+183 = 420k
k.
3 \nmid k,
\gcd
63
2 \nmid k,
\gcd
120
k = 1
k=5 \implies n = 1917,
1+9+1+7 = \boxed{\textbf{(C) } 18}.
\gcd(n+63,120)=60
n+63\equiv60\pmod {120}
n+63
n>1000
1140
n+63=1140
n+120=1197
\gcd(n+120,63)=21
n+120\equiv21\pmod {63}
n+120\equiv42\pmod {63}
1197\equiv0\pmod {63}
n+120
120
1197
n+63
n+120\pmod {63}
6
120
n=1917
n+120\equiv21\pmod {63}
1917
\boxed{\textbf{(C) } 18}$.
-SmileKat32
==Solution 9==
We are able to set-up the following system-of-congruences:
<cmath>n \equiv 6 \pmod {21},</cmath>
<cmath>n \equiv 57 \pmod {60}.</cmath>
Therefore, by definition, we are able to set-up the following system of equations:
<cmath>n = 21a + 6,</cmath>
<cmath>n = 60b + 57.</cmath>
Thus,
<cmath>21a + 6 = 60b + 57</cmath>
<cmath>\implies 7a + 2 = 20b + 19.</cmath>
We know$ (Error compiling LaTeX. Unknown error_msg)7a \equiv 0 \pmod {7},7a = 20b + 17,
20b + 17 \equiv 0 \pmod{7}.
b = 7x + 3.
n = 1917
\boxed{18}$.
(Remarks.$ (Error compiling LaTeX. Unknown error_msg)n \equiv 6 \pmod{21}n \equiv -120 \pmod{21},$by definition &$ (Error compiling LaTeX. Unknown error_msg)n \equiv 57 \pmod{60}
n \equiv -63 \pmod{60},$by definition.
Remember,$ (Error compiling LaTeX. Unknown error_msg)5b \equiv 1 \pmod{7} \implies 5b \equiv 15 \pmod{7} \implies b \equiv 3 \pmod{7}.n \neq 1077
n + 120
63$, which is not possible due to the certain condition.)
~ nikenissan
== Solution 10==
First, we find$ (Error compiling LaTeX. Unknown error_msg)n1000
n = 1000
gcd(63, n + 120) = 21
n
120
21
63
21
14
7
53
n
14
1000
n = 1014
n$is currently divisible by 63, but that's fine since we'll be changing it in the next step.)
Now using, the second equation,$ (Error compiling LaTeX. Unknown error_msg)gcd(n + 63, 120) = 60n
63
60
120
21
n
n
\frac{n + 120}{21}
21
18 r 18
21
19
1077 + 21 + 21 + 21 = 1140
120
21
60
420
1140 + 420 = 1560
120
420
1980
n + 63
63
1980
1917
n$.
The sum of its digits are$ (Error compiling LaTeX. Unknown error_msg)1 + 9 + 1 + 7 = 18$.
So, our answer is$ (Error compiling LaTeX. Unknown error_msg)\boxed{\textbf{(C) }18}$. ~ primegn
Video Solution 1
https://youtu.be/tk3yOGG2K-s ~ Richard Rusczyk
Video Solution 2
Education The Study of Everything
Video Solution 3
https://www.youtube.com/watch?v=gdGmSyzR908&list=PLLCzevlMcsWNcTZEaxHe8VaccrhubDOlQ&index=5 ~ MathEx
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.