2021 AIME II Problems/Problem 8
Contents
Problem
An ant makes a sequence of moves on a cube where a move consists of walking from one vertex to an adjacent vertex along an edge of the cube. Initially the ant is at a vertex of the bottom face of the cube and chooses one of the three adjacent vertices to move to as its first move. For all moves after the first move, the ant does not return to its previous vertex, but chooses to move to one of the other two adjacent vertices. All choices are selected at random so that each of the possible moves is equally likely. The probability that after exactly 
 moves that ant is at a vertex of the top face on the cube is 
, where 
 and 
 are relatively prime positive integers. Find 
Solution 1 (Four-Variable Recursion)
For all positive integers 
 let
 be the number of ways to make a sequence of exactly 
 moves, where the last move is from the bottom face to the bottom face.
 be the number of ways to make a sequence of exactly 
 moves, where the last move is from the bottom face to the top face.
 be the number of ways to make a sequence of exactly 
 moves, where the last move is from the top face to the bottom face.
 be the number of ways to make a sequence of exactly 
 moves, where the last move is from the top face to the top face.
The base case occurs at 
 from which 
 
Suppose the ant makes exactly 
 moves for some 
 We perform casework on its last move:
- If its last move is from the bottom face to the bottom face, then its next move has
 
 way to move from the bottom face to the bottom face.
 way to move from the bottom face to the top face.- If its last move is from the bottom face to the top face, then its next move has 
 ways to move from the top face to the top face. - If its last move is from the top face to the bottom face, then its next move has 
 ways to move from the bottom face to the bottom face. - If its last move is from the top face to the top face, then its next move has
 way to move from the top face to the bottom face.
 way to move from the top face to the top face.
 
Alternatively, this recursion argument is illustrated below, where each dashed arrow indicates 
 way, and each solid arrow indicates 
 ways:
Therefore, we have the following relationships:
Using these equations, we recursively fill out the table below:
By the Multiplication Principle, there are 
 ways to make exactly 
 moves. So, we must get 
 for all values of 
Finally, the requested probability is 
 from which the answer is 
~Arcticturn (Fundamental Logic)
~MRENTHUSIASM (Reconstruction)
Solution 2 (One-Variable Recursion)
Define 
 to be the probability that after 
 moves, the ant ends up on the level it started on (assuming the first move is a normal move where the ant can stay or move to the opposite level with half chance each). Note 
 and 
. 
Consider when the ant has 
 moves left. It can either stay on its current level with 
 chance and 
 moves left, or travel to the opposite level with 
 chance and 
 moves left (it must spend another move as it cannot travel back immediately). We then have the recurrence 
On the first move, the ant can stay on the bottom level with 
 chance and 
 moves left. Or, it can move to the top level with 
 chance and 
 moves left (it has to spend one on the top as it can not return immediately). So the requested probability is 
. 
Computing 
 we get 
 and 
. The requested probability is 
, so the answer is 
.
~IAmLegend (1e9end.github.io)
Solution 3 (Casework)
On each move, we can either stay on the level we previously were (stay on the bottom/top) or switch levels (go from top to bottom and vise versa). Since we start on the bottom, ending on the top means that we will have to switch an odd number of times; since we cannot switch twice in a row, over an eight-move period we can either make one or three switches. Furthermore, once we switch to a level we can choose one of two directions of traveling on that level: clockwise or counterclockwise (since we can't go back to our previous move, our first move on the level after switching determines our direction).
- Case 1: one switch. Our one switch can either happen at the start/end of our moves, or in the middle. There are 
 ways to do this, outlined below.
- Subcase 1: switch happens at ends. If our first move is a switch, then there are two ways to determine the direction we travel along the top layer. Multiply by 
 to count for symmetry (last move is a switch) so this case yields 
 possibilities. - Subcase 2: switch happens in the middle. There are six places for the switch to happen; the switch breaks the sequences of moves into two chains, with each having 
 ways to choose their direction of travel. This case yields 
 possibilities. 
 - Subcase 1: switch happens at ends. If our first move is a switch, then there are two ways to determine the direction we travel along the top layer. Multiply by 
 - Case 2: three switches. Either two, one, or none of our switches occur at the start/end of our moves. There are 
 ways to do this, outlined below. (Keep in mind we can't have two switches in a row.)
- Subcase 1: start and end with a switch. Since our third switch can't be in moves 
 or 
, there are four ways to place our switch, breaking our sequence into two chains. This case yields 
 possibilities. - Subcase 2: one of our switches is at the start/end. WLOG our first move is a switch; moves 
 and 
 cannot be switches. We can choose 
 from any of the remaining 
 moves to be switches, but we have to subtract the 
 illegal cases where the two switches are in a row (3-4, 4-5, 5-6, 6-7). These three switches break our sequence into three chains; accounting for symmetry this case yields 
 possibilities. - Subcase 3: all our switches are in the middle. We choose 
 from any of the 
 middle moves to be our switches, but have to subtract the cases where at least two of them are in a row. If at least two switches are in a row, there are five places for the group of 
 and four places for the third switch; however this overcounts the case where all three are in a row, which has 
 possibilities. These three switches break our sequence into four chains, so this case yields 
 possibilities. 
 - Subcase 1: start and end with a switch. Since our third switch can't be in moves 
 
Our probability is then 
, so the answer is 
.
See Also
| 2021 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 7  | 
Followed by Problem 9  | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. 
 possibilities.
 possibilities.