2024 AMC 12B Problems/Problem 6
Problem 6
The national debt of the United States is on track to reach dollars by
. How many digits does this number of dollars have when written as a numeral in base 5? (The approximation of
as
is sufficient for this problem)
Solution 1
The number of digits is just .
Note that
Hence, our answer is
~tsun26 (small modification by notknowanything)
Solution 2
We see that and
. Converting this to base
gives us
(trust me it doesn't take that long). So the final number in base
is
with
zeroes at the end, which gives us
digits. So the answer is
.
~sidkris
Solution 2a (Base Conversion)
To convert the number \(8192\) from base 10 to base 5, we follow these steps:
1. Divide the number by 5 repeatedly, noting the quotient and remainder each time.
2. Stop when the quotient becomes 0, then read the remainders from bottom to top.
Now, reading the remainders from bottom to top: \( 2, 3, 0, 2, 3, 2 \).
Thus, \(8192\) in base 5 is:
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.