2025 AIME I Problems
| 2025 AIME I (Answer Key) | AoPS Contest Collections • PDF | ||
|
Instructions
| ||
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
Contents
Problem 1
Find the sum of all integer bases
for which
is a divisor of
.
Problem 2
In
points
and
lie on
so that
, while points
and
lie on
so that
. Suppose
,
,
,
,
, and
. Let
be the reflection of
through
, and let
be the reflection of
through
. The area of quadrilateral
is
. Find the area of heptagon
, as shown in the figure below.
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
See also
| 2025 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by 2024 AIME II |
Followed by 2025 AIME II | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
- American Invitational Mathematics Examination
- AIME Problems and Solutions
- Mathematics competition resources
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.