2025 AIME II Problems/Problem 12
Problem
Let be a non-convex
-gon such that
• The area of is
for each
,
•
for each
,
• The perimeter of
is
.
If can be expressed as
for positive integers
with
squarefree and
, find
.
Solution 1
Since are the same, we have have
and
, since
is the same for all the
, so
are the same for all
, set them be
Now we have
Solve the system of equations we could get ,
~Bluesoul
2
i
10, cos\angle
=
\\
So sin\angle
=
\\
Since the area of each triangle is 1,\\
\times
A_{i}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+1}
\angle A_{i}
A_{i+1}$=1\$ (Error compiling LaTeX. Unknown error_msg)\Rightarrow$$ (Error compiling LaTeX. Unknown error_msg)A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+1}
\frac{26}{5}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+1}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+1}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i+2}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{i}
\\
In
and
,\\
they share one of the same side and the angles on vertex
are the same
=
\\
So they are congruent \\
This means
2
i
9
=
\\
Perimeter =
+
+
=20\\
Then
+
+9
=20\\
Let us set
=a
=b and
=c\\
Then a+b+9c=20\\
Now, we apply cosine law in
\\
^{2}=
^{2} +
^{3}-2
\times
cos\angle A_{2}
A_{3}$\$ (Error compiling LaTeX. Unknown error_msg)\Rightarrow
\times\frac {12}{13}
A_{1}$$ (Error compiling LaTeX. Unknown error_msg)A_{2}
A_{11}$$ (Error compiling LaTeX. Unknown error_msg)A_{1}
\times\frac {12}{13}=t^{2}-2\times\frac {26}{5}\times (1+\frac {12}{13})\\
c^{2}=t^{2}- 20 \\
Since 9c=20-a-b=20-t\\
Square both sides, giving 81c^{2}=400+t^{2}-40t\\
81t^{2}-20\times81=400+t^{2}-40t\\
80t^{2}+40t-20\times101\\
80t^{2}+40t-20\times101\\
4t^{2}+2t-101\\
Soving it, we get t=\frac{9\sqrt{5}-1 }{4} \\
So m+n+p+q=1+4+5+9=19 is the correct answer