2023 WSMO Tiebreaker Round Problems/Problem 3
Problem
Let be the set of all values of
such that the area of a triangle with side lengths
is a positive integer. Find
Solution
Letting be the base of the triangle, we have a height of
for
. Note for each height, we have two posible values of
, if the triangle if acute or obtuse. We have
\begin{align*}
a_1^2 &= \left(5-\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\right)^2+\left(\frac{2h}{5}\right)^2\\
&= 5^2+\left(7^2-\left(\frac{2h}{5}\right)^2\right)-10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}+\left(\frac{2h}{5}\right)^2\\
&= 74-10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\\
\end{align*}
for when the triangle is acute and
\begin{align*}
a_2^2 &= \left(5+\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\right)^2+\left(\frac{2h}{5}\right)^2\\
&= 5^2+\left(7^2-\left(\frac{2h}{5}\right)^2\right)+10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}+\left(\frac{2h}{5}\right)^2\\
&= 74+10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\\
\end{align*}
for when the triangle is obtuse. We have
So,
~pinkpig