2024 SSMO Relay Round 2 Problems/Problem 2
Problem
Let If
find the last three digits of
Solution
We seek to find the last three digits of Note that
\begin{align*}
\sum_{n=1}^{19}n(n+1)(n+2)&=\sum_{n=1}^{19}(n^3+3n^2+2n)\\
&=\sum_{n=1}^{19}n^3+3\sum_{n=1}^{19}n^2+2\sum_{n=1}^{19}n\\
&=\left(\frac{19\cdot20}{2}\right)^2+3\left(\frac{19\cdot20\cdot39}{6}\right)+2\left(\frac{19\cdot20}{2}\right)\\
&=190^2+(19\cdot39)\cdot10+380\\
&=36100+7410+380\\
&\equiv100+410+380\\
&\equiv\boxed{890}\pmod{1000}.
\end{align*}
~SMO_Team