1980 AHSME Problems/Problem 21

Revision as of 04:09, 25 June 2025 by J314andrews (talk | contribs) (Solution 1)

Problem

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, C=(15,3), D=(5,1), A=7*dir(72)*dir(B--C), E=midpoint(A--C), F=intersectionpoint(A--D, B--E); draw(E--B--A--C--B^^A--D); label("$A$", A, dir(D--A)); label("$B$", B, dir(E--B)); label("$C$", C, dir(0)); label("$D$", D, SE); label("$E$", E, N); label("$F$", F, dir(80));[/asy]

In triangle $ABC$, $\measuredangle CBA=72^\circ$, $E$ is the midpoint of side $AC$, and $D$ is a point on side $BC$ such that $2BD=DC$; $AD$ and $BE$ intersect at $F$. The ratio of the area of triangle $BDF$ to the area of quadrilateral $FDCE$ is

$\text{(A)} \ \frac 15 \qquad  \text{(B)} \ \frac 14 \qquad  \text{(C)} \ \frac 13 \qquad  \text{(D)}\ \frac{2}{5}\qquad \text{(E)}\ \text{none of these}$


Solution 1

Let $M$ be the midpoint of $\overline{DC}$. Then $\triangle ECM \sim \triangle ACD$ and $\overline{EM} || \overline{AD}$. Since $\overline{EM} || \overline{FD}$, it follows that $\triangle BFD \sim \triangle BEM$. Let $a$ be the area of $\triangle BFD$. Since the sides of $\triangle BEM$ are twice as long as the corresponding sides of $\triangle BFD$, the area of $\triangle BEM$ must be $2^2=4$ times the area of $\triangle BFD$, that is, $4a$. Since the height of $\triangle BEC$ is the same as the height of $\triangle BEM$ and the base of $\triangle BEC$ is $\frac{3}{2}$ times the base of $\triangle BEM$, the area of $\triangle BEC$ is $\frac{3}{2}$ times the area of $\triangle BEM$, or $\frac{3}{2} \cdot 4a = 6a$. Thus the area of quadrilateral $FDCE$ is $6a - a = 5a$, so the ratio of the area of $\triangle BFD$ to the area of quadrilateral $FDCE$ is $\frac{a}{5a} = \frac{1}{5}$ $\fbox{(A)}$.

-j4andrews

Solution 2

We can use the principle of same height same area to solve this problem. $\fbox{A}$

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png