2016 AMC 8 Problems/Problem 22

Revision as of 14:54, 24 August 2025 by Am24 (talk | contribs) (Solution 2)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Rectangle $DEFA$ below is a $3 \times 4$ rectangle with $DC=CB=BA=1$. The area of the "bat wings" (shaded area) is

[asy] draw((0,0)--(3,0)--(3,4)--(0,4)--(0,0)--(2,4)--(3,0)); draw((3,0)--(1,4)--(0,0)); fill((0,0)--(1,4)--(1.5,3)--cycle, black); fill((3,0)--(2,4)--(1.5,3)--cycle, black); label("$A$",(3.05,4.2)); label("$B$",(2,4.2)); label("$C$",(1,4.2)); label("$D$",(0,4.2)); label("$E$", (0,-0.2)); label("$F$", (3,-0.2)); label("$1$", (0.5, 4), N); label("$1$", (1.5, 4), N); label("$1$", (2.5, 4), N); label("$4$", (3.2, 2), E); [/asy]

$\textbf{(A) }2\qquad\textbf{(B) }2 \frac{1}{2}\qquad\textbf{(C) }3\qquad\textbf{(D) }3 \frac{1}{2}\qquad \textbf{(E) }5$


Solution 1

The area of trapezoid $CBFE$ is $\frac{1+3}2\cdot 4=8$. Next, we find the height of each triangle to calculate their area. The two non-colored isosceles triangles are similar, and are in a $3:1$ ratio by AA similarity (alternate interior and vertical angles) so the height of the larger is $3,$ while the height of the smaller one is $1.$ Thus, their areas are $\frac12$ and $\frac92$. Subtracting these areas from the trapezoid, we get $8-\frac12-\frac92 =\boxed3$. Therefore, the answer to this problem is $\boxed{\textbf{(C) }3}$.

~23orimy412uc3478

Solution 2

Plot the point $G$ where the two "wings" intersect. Now notice how $\triangle CBG\sim\triangle EFG$. Since the length of $\overline {CB}$ is one third that of $\overline {EF}$, then that means $\triangle EFG$'s height is $3$ times bigger than $\triangle CBG$. Since both of their heights ($h$) add up to four, then we have the equation $3h+h=4 \implies h=1$. Now that we now the height and length of both triangles, we can use complementary counting, $\text{Area}-\text{Unshaded Region}$.

$\text {Total Area}=12$

$[\triangle CDE]=2$

$[\triangle ABF]=2$

$[\triangle CBG]=\frac1{2}$

$[\triangle EFG]=\frac{9}{2}$

$\text {Unshaded Region}=9\implies\text{"Bat Wings"}=\boxed{\textbf{(C) }3}$

~AM24

Video Solution (CREATIVE THINKING + ANALYSIS!!!)

https://youtu.be/oBzkBYeHFa8

~Education, the Study of Everything

Video Solutions

Video Solution by OmegaLearn

https://youtu.be/FDgcLW4frg8?t=4448

~ pi_is_3.14

Video Solution only problem 22's by SpreadTheMathLove

https://www.youtube.com/watch?v=sOF1Okc0jMc

See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png