2025 SSMO Accuracy Round Problems/Problem 4
Problem
Let
and
be the roots of the polynomial
. Suppose that
for relatively prime positive integers
and
. Find
.
Solution
Let . By Vieta,
. We can use this fact to manipulate the expression whose absolute value we seek. We have
\begin{align*} \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} &= \frac{a(c+a)(a+b) + b(a+b)(b+c) + c(b+c)(c+a)}{(a+b)(b+c)(c+a)} \\
&= \frac{a(-4-b)(-4-c) + b(-4-c)(-4-a) + c(-4-a)(-4-b)}{(-4-a)(-4-b)(-4-c)} \\
&= \frac{16(a+b+c) + 8(ab+bc+ca) + 3abc}{f(-4)}.
\end{align*}
The rest is computation; we have
, and by Vieta, we know that
,
, and
. Plugging everything in, we find that
\begin{align*}
\left | \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \right | &= \left| \frac{16(-4) + 8(-3) + 3(4)}{8} \right | \\
&= \frac{19}{2}. \end{align*}
We extract
.
~Sedro