2025 SSMO Speed Round Problems/Problem 4
Problem
In rectangle let
be the circumcircle of
,
be the line through
parallel to
and
be the intersection of
and
. Suppose the value of
can be expressed as
where
and
are relatively prime positive integers. Find
.
Solution
Extend to intersect
at point
. Note that
and
, so
is a parallelogram. This implies that
and
. Let
. By power of a point on
with respect to
, we have
. We know that
,
,
, and
. Thus,
Solving this equation yields
, and we extract
.
~Sedro