2007 AMC 8 Problems/Problem 2

Revision as of 12:21, 12 July 2021 by Ghostyc (talk | contribs) (Problem)

Problem

$650$ students were surveyed about their pasta preferences. The choices were lasagna, manicotti, ravioli and spaghetti. The results of the survey are displayed in the bar graph. What is the ratio of the number of students who preferred spaghetti to the number of students who preferred manicotti?

[asy] size(200); defaultpen(linewidth(0.7)); defaultpen(fontsize(8)); draw(origin--(0,250)); int i; for(i=0; i<6; i=i+1) { draw((0,50*i)--(5,50*i)); } filldraw((25,0)--(75,0)--(75,150)--(25,150)--cycle, gray, black); filldraw((75,0)--(125,0)--(125,100)--(75,100)--cycle, gray, black); filldraw((125,0)--(175,0)--(175,150)--(125,150)--cycle, gray, black); filldraw((225,0)--(175,0)--(175,250)--(225,250)--cycle, gray, black); label("$50$", (0,50), W); label("$100$", (0,100), W); label("$150$", (0,150), W); label("$200$", (0,200), W); label("$250$", (0,250), W); label(rotate(90)*"Lasagna", (50,0), S); label(rotate(90)*"Manicotti", (100,0), S); label(rotate(90)*"Ravioli", (150,0), S); label(rotate(90)*"Spaghetti", (200,0), S); label(rotate(90)*"$\mbox{Number of People}$", (-40,140), W); [/asy]

$\mathrm{(A)} \frac{2}{5} \qquad \mathrm{(B)} \frac{1}{2} \qquad \mathrm{(C)} \frac{5}{4} \qquad \mathrm{(D)} \frac{5}{3} \qquad \mathrm{(E)} \frac{5}{2}$

Solution

The answer is $\dfrac{\text{number of students who preferred spaghetti}}{\text{number of students who preferred manicotti}}$

So,

$\frac{250}{100}$

Simplify,

$\frac{5}{2}$

The answer is $\boxed{\textbf{(E)}\ \dfrac{5}{2}}$

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png