2024 INMO
==Problem 1
\text {In} triangle ABC with , \text{point E lies on the circumcircle of} \text{triangle ABC such that}
. \text{The line through E parallel to CB intersect CA in F} \text{and AB in G}.\text{Prove that}\\ \text{the centre of the circumcircle of} triangle EGB \text{lies on the circumcircle of triangle ECF.}
Solution
https://i.imgur.com/ivcAShL.png To Prove: Points E, F, P, C are concyclic
Observe:
Notice that
because
.
Here F is the circumcentre of
because
lies on the Perpendicular bisector of AG
is the midpoint of
is the perpendicular bisector of
.
This gives
And because
Points E, F, P, C are concyclic.
Hence proven that the centre of the circumcircle of
lies on the circumcircle of
.
∼Lakshya Pamecha
Problem 3
Let p be an odd prime number and a,b,c be integers so that the integers are all divisible by p. Prove that p divides each of
.
Solution
If \Rightarrow
and
\Rightarrow p\vert b \Rightarrow
and
\Rightarrow
.\\
Therefore, if
divides one of
it will divide all of them.\\
Assume that
does not divide
or
Set
$$ (Error compiling LaTeX. Unknown error_msg) a^{2023} &\equiv k \pmod{p} \Rightarrow b^{2023} \equiv -k \pmod{p} \\ b^{2024} &\equiv -bk \pmod{p} \Rightarrow c^{2024} \equiv kb \pmod{p}\\ c^{2025} &\equiv kbc \pmod{p}\Rightarrow a^{2025} \equiv -kbc \pmod{p}\$$<cmath>\Rightarrow \boxed{a^2 &\equiv -bc \pmod{p}}</cmath>
Now we see that$ (Error compiling LaTeX. Unknown error_msg)$(a^{2023})^2 &\equiv (b^{2023})^2 \pmod{p}\\ (-bc)^{2023} &\equiv (b^2)^{2023} \pmod{p}\\ \Rightarrow -c^{2023} &\equiv b^{2023} \pmod{p}\; \text{and} \; b^{4048} \equiv c^{4048}\pmod{p}$ (Error compiling LaTeX. Unknown error_msg)
\text{So},
\[\boxed{b^2 &\equiv c^2 \pmod{p}}\] (Error compiling LaTeX. Unknown error_msg)
This gives us to 2 cases:\\ Case I:
\[b-c \equiv 0 \pmod{p} \Rightarrow b^{2024} \equiv c^{2024} \pmod{p} \Rightarrow 2b^{2024} &\equiv 0 \pmod{p} \Rightarrow p\vert b\] (Error compiling LaTeX. Unknown error_msg)
Case II:
On checking for both cases we get
which implies
and
.