1967 IMO Problems/Problem 2
Prove that if one and only one edge of a tetrahedron is greater than ,
then its volume is
.
Solution
Assume and let
. Let
be the feet of perpendicular from
to
and
and from
to
, respectively.
Suppose . We have that
,
. We also have
. So the volume of the tetrahedron is
.
We want to prove that this value is at most , which is equivalent to
. This is true because
.
The above solution was posted and copyrighted by jgnr. The original thread can be found here: [1]
Remarks (added by pf02, September 2024)
The solution above is essentially correct, and it is nice, but it is so sloppily written that it borders the incomprehensible. Below I will give an edited version of it for the sake of completeness.
Then, I will give a second solution to the problem.
A few notes which may be of interest.
The condition that one side is greater than is not really
necessary. The statement is true even if all sides are
.
What we need is that no more than one side is
.
The upper limit of for the volume of the tetrahedron
is actually reached. This will become clear from both solutions.
Solution
Assume and assume that all other sides are
.
Let
. Let
be the feet of perpendiculars from
to
, from
to the plane
, and from
to
,
respectively.
Suppose . We have that
,
. We also have
. So the volume of the tetrahedron is
.
We want to prove that this value is at most , which is equivalent to
. This is true because
.
TO BE CONTINUED. dOING A SAVE MIDWAY SP I DON'T LOOSE WORK DONE SO FAR.
See Also
1967 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |