2025 USAMO Problems/Problem 5
Problem
Determine, with proof, all positive integers such that
is an integer for every positive integer
Solution 1
https://artofproblemsolving.com/wiki/index.php/File:2025_USAMO_PROBLEM_5_1.jpg
https://artofproblemsolving.com/wiki/index.php/File:2025_USAMO_PROBLEM_5_2.jpg
Solution 2 (q-analogue roots of unity)
Throughout this proof we work in the polynomial ring .
For any positive integer , define the
-integer and
-factorial by
Each
is a degree
polynomial in
, so
.
Evaluating at
gives
.
Define the -binomial coefficient as
which recovers the usual binomial coefficient when
.
Let .
We want to prove that
for all
if and only if
is even.
Define the -analogue sum
Let
,
where
is the
-th cyclotomic polynomial.
To prove , it suffices to show
because evaluating at
yields
.
Suppose is a primitive
-th root of unity with
, so
.
We evaluate
at
:
Now suppose . Then each numerator term in the
-binomial
becomes
with
. Because
is a primitive
-th root of unity, we have
.
Therefore each numerator factor . The denominator terms are
. All such terms cancel, leaving:
Hence
If is odd, then
and the sum alternates in sign. The exponential phases
do not cancel this sign pattern. Therefore the sum is nonzero, so
, and
. Thus
.
If is even, then
, and
We now show this sum is zero. Define the involution . Then
So for even
, the exponent
satisfies
which means the terms
and
are mapped to opposite powers of
:
Each such pair adds up to
, and as
runs from
to
, the values
cancel in symmetric pairs. Therefore the sum vanishes:
so .
This holds for all , so
for all
if and only if
is even. Therefore
Evaluating at
gives
if and only if
is even.
Thus,
~Lopkiloinm
See Also
2025 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.