2000 AMC 10 Problems/Problem 18

Revision as of 23:04, 20 July 2025 by Rayaanrules (talk | contribs) (Problem)

Problem

Charlyn walks completely around the boundary of a square whose sides are each $5$ km long. From any point on her path she can see exactly $1$ km horizontally in all directions. What is the area of the region consisting of all points Charlyn can see during her walk, expressed in square kilometers (km^2 and rounded to the nearest whole number?

$\textbf{(A)} 24 \qquad\textbf{(B)}\ 27 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 42$

Video Solution

https://youtu.be/j7Hi5I8INII - Happytwin

Solution

The area she sees looks at follows:

[asy] unitsize(0.8cm);  path p1 = (0,0)--(5,0)--(5,5)--(0,5)--cycle; path p2 = (1,1)--(4,1)--(4,4)--(1,4)--cycle; path p3 = arc((0,0),1,180,270) -- arc((5,0),1,270,360) -- arc((5,5),1,0,90) -- arc((0,5),1,90,180) -- cycle; fill(p3,lightgray); unfill(p2);  draw(p1,linewidth(bp)); draw(p2); draw(p3); draw( (0,0)--(-1,0), dashed ); draw( (0,0)--(0,-1), dashed ); draw( (5,0)--(6,0), dashed );  draw( (5,0)--(5,-1), dashed ); draw( (5,5)--(6,5), dashed );  // This line is correct draw( (5,5)--(5,6), dashed ); // Add semicolon here draw( (0,5)--(-1,5), dashed ); draw( (0,5)--(0,6), dashed );  draw( (0,-1)--(5,-1), Arrows ); label( "$5$", (2.5,-1), S ); draw( (1,1)--(4,1), Arrows ); label( "$3$", (2.5,1), N ); draw( (4,3.5)--(5,3.5), Arrows ); label( "$1$", (4.5,3.5), N ); draw( (5,3.5)--(6,3.5), Arrows ); label( "$1$", (5.5,3.5), N ); [/asy]

The part inside the walk has area $5\cdot 5 - 3\cdot 3 = 16$. The part outside the walk consists of four rectangles, and four arcs. Each of the rectangles has area $5\cdot 1=5$. The four arcs together form a circle with radius $1$.

Therefore the total area she can see is $16 + 4\cdot 5 + \pi\cdot 1^2 = 36+\pi \simeq 39.14$, which rounded to the nearest integer is $39$. $\boxed{C}$

Video Solution by Daily Dose of Math

https://youtu.be/509okdgEaFM?si=ns2w-utssCI_6GJx

~Thesmartgreekmathdude

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png