Euc20197/Sub-Problem 2

Revision as of 08:40, 10 October 2025 by Yuhao2012 (talk | contribs) (Solution 1)

Problem

Consider the function $f(x) = x^2 - 2x$. Determine all real numbers $x$ so that $x$ satisfy $f(f(f(x))) = 3$

Solution 1

Let's start with the outermost $f(x)$. If $f(x)=3$, then $x^2-2x-3=0$, so $x=-1$ or $3$. Now, let's do the middle $f(x)$. Here, $f(x)=-1$ or $3$. If $f(x)=3$, then $x=3$ or $-1$. If $f(x)=-1$, then $x^2-2x=-1$, so $x^2-2x+1=0$. Here, $x=1$ is the only solution. Now, let's do the innermost $f(x)$. Here, because from the middle $f(x)$ we have the possibilities of $x=1, -1,$ or $3$, so we have $f(x)=1, -1,$ or $3$. If $f(x)=3$, then $x=-1$ or $3$. If $f(x)=-1$, then $x=1$. If $f(x)=1$, then we have $x^2-2x=1$, so $x^2-2x-1=0$. Here, after applying the quadratic formula, will give us $x=1-\sqrt2$ or $1+\sqrt2$, so our possibilities are $\boxed{3, -1, 1, 1+\sqrt2,}$ and $\boxed{1-\sqrt2}$.


~Yuhao2012

Video Solution

https://www.youtube.com/watch?v=M4gzTG8HnQ4

~North America Math Contest Go Go Go