1959 IMO Problems
Revision as of 14:24, 25 July 2006 by Boy Soprano II (talk | contribs)
Problems of the 1st IMO 1959 Romania.
Contents
Day I
Problem 1
Prove that
is irreducible for every natural number
.
Problem 2
For what real values of
is
given (a)
, (b)
, (c)
, where only non-negative real numbers are admitted for square roots?
Problem 3
Let
be real numbers. Consider the quadratic equation in
:
Using the numbers
, form a quadratic equation in
, whose roots are the same as those of the original equation. Compare the equations in
and
for
.