2018 USAJMO Problems/Problem 2

Revision as of 01:32, 20 April 2018 by Nukelauncher (talk | contribs) (Created page with "== Problem == Let <math>a,b,c</math> be positive real numbers such that <math>a+b+c=4\sqrt[3]{abc}</math>. Prove that <cmath>2(ab+bc+ca)+4\min(a^2,b^2,c^2)\ge a^2+b^2+c^2.</cm...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $a,b,c$ be positive real numbers such that $a+b+c=4\sqrt[3]{abc}$. Prove that \[2(ab+bc+ca)+4\min(a^2,b^2,c^2)\ge a^2+b^2+c^2.\]

Solution 1

WLOG let $a \leq b \leq c.$ Add $2(ab+bc+ca)$ to both sides of the inequality and factor to get: \[4(a(a+b+c)+bc) \geq (a+b+c)^2\] \[\frac{4a\sqrt[3]{abc}+bc}{2} \geq 2\sqrt[3]{a^2b^2c^2}\]

The last inequality is true by AM-GM. Since all these steps are reversible, the proof is complete.

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png

See also

2018 USAJMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAJMO Problems and Solutions