2000 AIME I Problems/Problem 9
Contents
Problem
The system of equations
has two solutions
and
. Find
.
Solution
Since
, we can reduce the equations to a more recognizable form:
Let
be
respectively. Using SFFT, the above equations become (*)
From here, multiplying the three equations gives
Dividing the third equation of (*) from this equation,
. This gives
, and the answer is
.
Solution 2
Subtracting the second equation from the first equation yields
\begin{align*}
\log 2000xy-\log 2yz-((\log x)(\log y)-(\log y)(\log z)) &= 3 \\
\log\frac{2000xy}{2yz}-\log y(\log x-\log z) &= 3 \\
\log1000+\log\frac{x}{z}-\log y(\log\frac{x}{z}) &= 3 \\
\3+\log\frac{x}{z}-\log y(\log\frac{x}{z}) &= 3 \\
(1-\log y)(\log\frac{x}{z})=0 \\
\end{align*} (Error compiling LaTeX. Unknown error_msg)
See also
| 2000 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.