2020 IMO Problems/Problem 2
Problem 2. The real numbers
are such that
and
.
Prove that
Solution
Using Weighted AM -GM we get,
So,
Now notice that ,
\[
a+2b+3c+4d \le
\begin{cases}
a+3b+3c+3d,& \text{as } d\le b\\
3a+3b+3c+d, &\text{as} d\le a \\
3a+b+3c+3d ,& \text{as}
b+d\le 2a \\
3a +3b +c +3d ,& \text{as}
2c+d \le 2a+b
\end{cases}
\]
So, We get ,
Now , For equality we must have
On that case we get ,