2021 AIME II Problems/Problem 14
Problem
Let
be an acute triangle with circumcenter
and centroid
. Let
be the intersection of the line tangent to the circumcircle of
at
and the line perpendicular to
at
. Let
be the intersection of lines
and
. Given that the measures of
and
are in the ratio
the degree measure of
can be written as
where
and
are relatively prime positive integers. Find
.
Solution
Let
be the midpoint of
. Because
,
and
are cyclic, so
is the center of the spiral similarity sending
to
, and
. Because
, it's easy to get
from here.
~Lcz
See also
| 2021 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 13 |
Followed by Problem 15 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.