2022 AMC 12A Problems/Problem 22
Problem
Let be a real number, and let
and
be the two complex numbers satisfying the equation
. Points
,
,
, and
are the vertices of (convex) quadrilateral
in the complex plane. When the area of
obtains its maximum possible value,
is closest to which of the following?
Solution
Because is real,
.
We have
where the first equality follows from Vieta's formula.
Thus, .
We have
where the first equality follows from Vieta's formula.
Thus, .
We have
where the second equality follows from Vieta's formula.
We have
where the second equality follows from Vieta's formula.
Therefore,
where the inequality follows from the AM-GM inequality, and it is augmented to an equality if and only if
.
Thus,
.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)