2003 IMO Problems/Problem 5
Problem
Let be a positive integer and let
be real numbers. Prove that
with equality if and only if form an arithmetic sequence.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
\[
\text{We first make use of symmetry to rewrite the inequality as}
\]
\[
\left(\sum_{1\le i<j\le n}|x_i-x_j|\right)^2\le\frac{n^2-1}3<br="">\left(\sum_{1\le i<j\le n}|x_i-x_j|^2\right)<br="">\]
\[
\text{WLOG that } x_1\le x_2\le\dots\le x_n \text{ and let } x_{i-1}-x_i=a_i.
\]
\[
\text{The inequality is equivalent to}
\]
\[
\left(\sum_{1\le i<j\le n}\left(a_i+\dots+a_{j-1}\right)="" \right)^2\le\frac{n^2-1}3<br="">\left(\sum_{1\le i<j\le n}\left(a_i+\dots+a_{j-1}\right)^2\right)="" <br="">\]
\[
\text{for all } a_1,\dots,a_{n-1}. \text{But this can be rewritten as}
\]
\[
\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right) \right)^2\le\frac{n^2-1}3
\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right)^2\right)
\]
\text{By Cauchy-Schwarz:}
\begin{align*}
\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right)^2\right)\left(\sum_{l=1}^{n-1}\sum_{j-i=l}l^2\right)&\ge\left(\sum_{l=1}^{n-1}\sum_{j-i=l}l\left(a_i+\dots+a_j\right)\right)^2\\ &=\left(\sum_{l=1}^{n-1}l\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2
\end{align*}
\text{We claim that }
\[
\sum_{j-i=l}(a_i+\dots+a_j)=\sum_{j-i=(n-l)}(a_i+\dots+a_j).
\]
\text{Indeed, we may consider the } \text{ matrix:}
\[
\left( \begin{array}{cccc}
a_1 & a_2 & \dots & a_l \\
a_2 & a_3 & \dots & a_{l+1} \\
\vdots & \vdots & \ddots & \vdots\\
a_{n-l} & a_{n-l+1} & \dots & a_n
\end{array} \right)
\]
\text{The first sum corresponds to summing the matrix row by row, and the second corresponds to summing it column by column. Thus the two sums are equal, as claimed.}
\text{Hence:}
\begin{align*}
\left(\sum_{l=1}^{n-1}l\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2&=\left(\sum_{l=1}^{n-1}\frac n2\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2\\ &=\frac{n^2}4\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2
\end{align*}
\text{We may also check that }
\[
\sum_{l=1}^{n-1}\sum_{j-i=l}l^2=\sum_{l=1}^{n-1}(n-l)l^2=\frac{n^4-n^2}{12}.
\]
\text{Thus we have proven that }
\[
\frac{n^4-n^2}{12}\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right)^2\right)\ge\frac{n^2}4\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2
\]</j\le></j\le></j\le></j\le>
See Also
2003 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |