2022 SSMO Team Round Problems/Problem 3
Problem
Let be an isosceles trapezoid such that
Let
be a point on
such that
Let the midpoint of
be
such that
intersects
at
and
at
If
and
then
can be expressed as
where
and
are relatively prime positive integers. Find
[asy] unitsize(2mm); fill((6,8/5)--(10,8/3)--(6,8)--cycle,lightgray); draw((0,0)--(36,0)--(30,8)--(6,8)--cycle); draw((6,8)--(12,0)--(0,0)); draw((0,0)--(30,8)); draw((6,8)--(6,0)); label("A", (6,8), NW); dot((6,8)); label("B", (30,8), NE); dot((30,8)); label("C", (36,0), SE); dot((36,0)); label("D", (0,0), SW); dot((0,0)); label("E",(12,0),S); dot((12,0)); label("M",(6,0),S); dot((6,0)); dot((6,8/5)); dot((10,8/3)); [/asy]