2000 AMC 12 Problems/Problem 24
Contents
Problem
If circular arcs
and
have centers at
and
, respectively, then there exists a circle tangent to both
and
, and to
. If the length of
is
, then the circumference of the circle is
Solutions
Solution 2 (Pythagorean Theorem)
First, note the triangle
is equilateral. Next, notice that since the arc
has length 12, it follows that we can find the radius of the sector centered at
.
. Next, connect the center of the circle to side
, and call this length
, and call the foot
. Since
is equilateral, it follows that
, and
(where O is the center of the circle) is
. By the Pythagorean Theorem, you get
. Finally, we see that the circumference is
.
Video Solution by OmegaLearn
https://youtu.be/NsQbhYfGh1Q?t=3466
~ pi_is_3.14
Video Solution
See Also
| 2000 AMC 12 (Problems • Answer Key • Resources) | |
| Preceded by Problem 23 |
Followed by Problem 25 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.