During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

1995 AHSME Problems/Problem 23

Revision as of 18:18, 7 January 2008 by Azjps (talk | contribs) (solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The sides of a triangle have lengths $11,15,$ and $k$, where $k$ is an integer. For how many values of $k$ is the triangle obtuse?

$\mathrm{(A) \ 5 } \qquad \mathrm{(B) \ 7 } \qquad \mathrm{(C) \ 12 } \qquad \mathrm{(D) \ 13 } \qquad \mathrm{(E) \ 14 }$

Solution

By the Law of Cosines, a triangle is obtuse if the sum of the squares of two of the sides of the triangles is less than the square of the third. The largest angle is either opposite side $15$ or side $k$. If $15$ is the largest side,

\[15^2 >11^2 + k^2 \Longrightarrow k < \sqrt{104}\]

By the Triangle Inequality we also have that $k > 4$, so $k$ can be $5, 6, 7, \ldots , 10$, or $6$ values.

If $k$ is the largest side,

\[k^2 >11^2 + 15^2 \Longrightarrow k > \sqrt{346}\]

Combining with the Triangle Inequality $19 \le k < 26$, or $7$ values. These total $13\ \mathrm{(D)}$ values of $k$.

See also

Template:Old AMC12 box