1991 USAMO Problems/Problem 5
Problem
Let
be an arbitrary point on side
of a given triangle
and let
be the interior point where
intersects the external common tangent to the incircles of triangles
and
. As
assumes all positions between
and
, prove that the point
traces the arc of a circle.
Solution
Let the incircle of
and the incircle of
touch line
at points
, respectively; let these circles touch
at
,
, respectively; and let them touch their common external tangent containing
at
, respectively, as shown in the diagram below.
size(220);
defaultpen(1);
pair A=(0,0), B=(220,0), C=(18.7723,118.523);
pair D=(72.6,0);
pair Ia=incenter(A,D,C), Ib=incenter(B,D,C);
pair Ta=(24.9758,52.5775),Tb=(86.6196,67.4129);
pair E=IntersectionPoint((Ta--Tb),(C--D));
path Oa=circle(Ia,inradius(A,D,C));
path Ob=circle(Ib,inradius(B,D,C));
pair Da=IP(Oa,A--B), Db=IP(Ob,A--B);
pair Ca=IP(Oa,C--D), Cb=IP(Ob,C--D);
draw(D--C--A--B--C);
draw(Ta--Tb);
draw(Oa);
draw(Ob);
dot(A,linewidth(4));
dot(B,linewidth(4));
dot(C,linewidth(4));
dot(D,linewidth(4));
dot(E,linewidth(4));
dot(Ta,linewidth(4));
dot(Tb,linewidth(4));
dot(Ca,linewidth(4));
dot(Cb,linewidth(4));
dot(Da,linewidth(4));
dot(Db,linewidth(4));
label("<math>A</math>",A,SW);
label("<math>B</math>",B,SE);
label("<math>C</math>",C,W);
label("<math>D</math>",D,S);
label("<math>E</math>",E,NNE);
label("<math>T_a</math>",Ta,N);
label("<math>T_b</math>",Tb,WNW);
label("<math>D_a</math>",Da,S);
label("<math>D_b</math>",Db,S);
label("<math>C_a</math>",Ca,WSW);
label("<math>C_b</math>",Cb,ENE);
(Error making remote request. Unknown error_msg)
We note that
On the other hand, since
and
are tangents from the same point to a common circle,
, and similarly
, so
On the other hand, the segments
and
evidently have the same length, and
, so
. Thus
If we let
be the semiperimeter of triangle
, then
, and
, so
Similarly,
so that
Thus
lies on the arc of the circle with center
and radius
intercepted by segments
and
. If we choose an arbitrary point
on this arc and let
be the intersection of lines
and
, then
becomes point
in the diagram, so every point on this arc is in the locus of
.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Resources
| 1991 USAMO (Problems • Resources) | ||
| Preceded by Problem 4 |
Followed by Last Question | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||