2008 AMC 12A Problems/Problem 24
Revision as of 11:05, 24 February 2008 by Chickendude (talk | contribs) (Added Solution - Need help on asymptote)
Problem
Triangle
has
and
. Point
is the midpoint of
. What is the largest possible value of
?
Solution
unitsize(12mm);
pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60));
pair E=(1,0), F=(2,0);
draw(C--B--A--C);
draw(A--D);
draw(D--E);
draw(B--F);
dot(A);
dot(B);
dot(C);
dot(D);
dot(E);
dot(F);
label("C",C,SW);
label("B",B,N);
label("A",A,SE);
label("D",D,NW);
label("E",E,S);
label("F",F,S);
label("<math>60^\circ</math>",C,NE);
label("2",1*dir(60),NW);
label("2",3*dir(60),NW);
label("<math>\theta</math>",(7,.4));
label("1",(.5,0),S);
label("1",(1.5,0),S);
label("x-2",(5,0),S);
(Error making remote request. Unknown error_msg)
Where
Since
and
, we have
Multiplying numerator and denominator by
If you know calculus, you can use that right here to max
, but if you don't:
By AM-GM
Which means that the minimum is
See Also
| 2008 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 23 |
Followed by Problem 25 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |