Mock AIME I 2012 Problems/Problem 10
Problem 10
Consider the function . Find the sum of all
for which
, where
is measured in degrees and
.
Solution 1
Recalling the trigonometric sum-to-product identities, we can rearrange terms and evaluate as follows:
\begin{align*}
f(23, x) &= \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{22x} + \sin{23x}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{22x} + \cos{23x}} \\
&= \dfrac{(\sin{x} + \sin{23x}) + (\sin{2x} + \sin{22x}) + \cdots + (\sin{11x} + \sin{13x}) + \sin{12x}}{(\cos{x} + \cos{23x}) + (\cos{2x} + \cos{22x}) + \cdots + (\cos{11x} + \cos{13x}) + \cos{12x}} \\
&= \dfrac{2\sin{12x}\cos{11x}+2\sin{12x}\cos{10x}+\cdots+2\sin{12x}\cos{x}+\sin{12x}}{2\cos{12x}\cos{11x}+2\cos{12x}\cos{10x}+\cdots+2\cos{12x}\cos{x}+\cos{12x}} \\
&= \dfrac{2\sin{12x}(\cos{11x}+\cos{10x}+\cos{9x}+\cdots+\cos{x}+1)}{2\cos{12x}(\cos{11x}+\cos{10x}+\cdots+\cos{x}+1)} \\
&= \dfrac{\sin{12x}}{\cos{12x}} \\
&= \tan{12x}
\end{align*}
Likewise, we can show that
Now, we desire to find all that satisfy the following equation:
Because
has a period of
and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that
must then be some integer multiple of tangent's period,
. Thus,
must be a multiple of
, and so the possible values of
between
and
are
,
, and
.
Now, we can add these three values to compute our final answer: