2024 AMC 10A Problems/Problem 20

Revision as of 21:24, 20 March 2025 by Maa is stupid (talk | contribs)

Problem

Point $X$ lies outside regular pentagon $ABCDE$ so that $\triangle BXE$ is an equilateral triangle, as shown below. What is the degree measure of acute angle $\angle CXD$?

[asy] import graph; size(7cm); real labelscalefactor = 0.75; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -1.089556028373145, xmax = 2.738320502950249, ymin = -1.3143096399343266, ymax = 1.2691431521185288; /* image dimensions */ pen qqwuqq = rgb(0,0.39215686274509803,0);  filldraw(arc((1.9562952014676112,0),0.25,168,192)--(1.9562952014676112,0)--cycle, mediumgrey); /* draw figures */ draw((-0.8090169943749473,0.5877852522924731)--(0.30901699437494745,0.9510565162951535)); draw((0.30901699437494745,0.9510565162951535)--(1,0)); draw((1,0)--(0.3090169943749473,-0.9510565162951536)); draw((0.3090169943749473,-0.9510565162951536)--(-0.8090169943749475,-0.587785252292473)); draw((-0.8090169943749475,-0.587785252292473)--(-0.8090169943749473,0.5877852522924731)); draw((0.30901699437494745,0.9510565162951535)--(0.3090169943749473,-0.9510565162951536)); draw((0.3090169943749473,-0.9510565162951536)--(1.9562952014676112,0)); draw((1.9562952014676112,0)--(0.30901699437494745,0.9510565162951535)); draw((-0.8090169943749473,0.5877852522924731)--(1.9562952014676112,0), dashed); draw((1.9562952014676112,0)--(-0.8090169943749475,-0.587785252292473), dashed); /* dots and labels */ dot((1,0),linewidth(4pt) + dotstyle); label("$A$", (1.013592864312142,0), E * labelscalefactor); dot((0.30901699437494745,0.9510565162951535),linewidth(4pt) + dotstyle); label("$B$", (0.26,1), NE * labelscalefactor); dot((-0.8090169943749473,0.5877852522924731),linewidth(4pt) + dotstyle); label("$C$", (-0.82,0.64), NW * 0.25); dot((-0.8090169943749475,-0.587785252292473),linewidth(4pt) + dotstyle); label("$D$", (-0.82,-0.64), SW * 0.25); dot((0.3090169943749473,-0.9510565162951536),linewidth(4pt) + dotstyle); label("$E$", (0.26,-1), SE * labelscalefactor); dot((1.9562952014676112,0),linewidth(4pt) + dotstyle); label("$X$", (1.9705619971429902, 0), E * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy]

$\textbf{(A)}~18^{\circ}\qquad\textbf{(B)}~19.5^{\circ}\qquad\textbf{(C)}~21^{\circ}\qquad\textbf{(D)}~22.5^{\circ}\qquad\textbf{(E)}~24^{\circ}$

Solution

Note that $EB = EC = EX$, so it follows that $E$ is the circumcenter of $\triangle BCX$. Therefore, $\angle BXC = \tfrac{\angle BEC}{2} = 18^{\circ}$, so by symmetry \[\angle CXD = \angle BXE - 2 \angle BXC = 60^{\circ} - 2 \cdot 18^{\circ} = \boxed{\textbf{(E)}~24^{\circ}}.\]

~ihatemath123

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png