2018 Putnam B Problems/Problem 2
Revision as of 18:10, 17 August 2025 by Pinotation (talk | contribs) (Created page with "Let \( n \) be a positive integer, and let \( f_n(z) = n + (n-1)z + (n-2)z^2 + \dots + z^{n-1} \). Prove that \( f_n \) has no roots in the closed unit disk \( \{z \in \mathbb...")
Let \( n \) be a positive integer, and let \( f_n(z) = n + (n-1)z + (n-2)z^2 + \dots + z^{n-1} \). Prove that \( f_n \) has no roots in the closed unit disk \( \{z \in \mathbb{C}: |z| \leq 1 \} \).