2023 SSMO Team Round Problems/Problem 12
Problem
Let be the set of rationals of the form
for nonnegative
and
. Define the function
such that, for
such
is minimal, we have that
Suppose
equals
. Find
.
Solution
Define
for
. We want to find
.
We claim by induction that
The base case is , so it holds.
Now suppose the formula holds for some . Note that for
, by symmetry we have
.
Next, observe: \begin{align*} S_{n+1} &= \sum_{i=0}^{2^{n+1}-1} \frac{f\left(\frac{i+1}{2^{n+1}}\right)}{f\left(\frac{i}{2^{n+1}}\right)} \\ &= \sum_{i=0}^{2^{n}-1} \left[ \frac{f\left(\frac{2i+1}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i+1}{2^{n+1}}\right)} \right]. \end{align*}
Since , the two terms become:
\begin{align*}
&\frac{f\left(\frac{2i}{2^{n+1}}\right) + f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right) + f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} \\
&= 1 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + 1 + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} = 2 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)}.
\end{align*}
Summing over from
to
, we get:
\begin{align*}
S_{n+1} &= \sum_{i=0}^{2^{n-1} - 1} \left(2 + \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)}\right) \\
&= 2 \cdot 2^{n-1} + \sum_{i=0}^{2^{n-1}-1} \left( \frac{f\left(\frac{2i+2}{2^{n+1}}\right)}{f\left(\frac{2i}{2^{n+1}}\right)} + \frac{f\left(\frac{2i}{2^{n+1}}\right)}{f\left(\frac{2i+2}{2^{n+1}}\right)} \right) \\
&= 2^{n} + S_n + 2^{n} = S_n + 3 \cdot 2^{n-1}.
\end{align*}
So the recurrence is valid.
Applying the closed-form:
so the final answer is
.
~SMO_Team