2024 SSMO Team Round Problems/Problem 14
Problem
Let be the roots of the polynomial
Find the value of
Solution
Let denote the polynomial. We have
since
covers the
case of
(which is the domain of the RHS product) squaring the nested product doubles it, covering the symmetric
case, and the third factor covers the
case. Now, note that \begin{align*}
\prod_{m=1}^{7}(a_na_m-1)&=-a_n^7\prod_{m=1}^7\left(\frac{1}{a_n}-a_m\right)\\
&=-a_n^7f\left(\frac{1}{a_n}\right)\\
&=-a_n^7-(5a_n^6+10a_n^5+a_n^4+a_n^3+9a_n^2+5a_n+1)\\
&=(5a_n^6+9a_n^5+a_n^4+a_n^3+10a_n^2+5a_n+1)-(5a_n^6+10a_n^5+a_n^4+a_n^3+9a_n^2+5a_n+1)\\
&=-a_n^5+a_n^2\\
&=-(a_n)^2(a_n^3-1).
\end{align*}
So,
\begin{align*}
\prod_{n=1}^7\prod_{n=1}^7(a_na_m-1)&=\prod_{n=1}^7\left(-(a_n)^2(a_n^3-1)\right)\\
&=-\left(\prod_{n=1}^7a_n\right)^2\prod_{n=1}^7(a_n-1)\prod_{n=1}(a_n-e^{\frac{2\pi i}{3}})\prod_{n=1}(a_n-e^{\frac{4\pi i}{3}})\\
&=-(-1)^2(-f(1))\left(-f\left(e^{\frac{2\pi i}{3}}\right)\right)\left(-f\left(e^{\frac{4\pi i}{3}}\right)\right)\\
&=f(1)f\left(e^{\frac{2\pi i}{3}}\right)f\left(e^{\frac{4\pi i}{3}}\right).
\end{align*}
For
and
So,
\begin{align*}
f\left(e^{\frac{2\pi i}{3}}\right) &= 12\left(\frac{-1+i\sqrt{3}}{2}\right)^2 = \frac{-12-12i\sqrt{3}}{2} = -6-6i\sqrt{3}\text{ and }\\
f\left(e^{\frac{4\pi i}{3}}\right) &= 12\left(\frac{-1-i\sqrt{3}}{2}\right)^2 = \frac{-12+12i\sqrt{3}}{2} = -6+6i\sqrt{3}\implies\\
f\left(e^{\frac{2\pi i}{3}}\right)f\left(e^{\frac{4\pi i}{3}}\right) &= (-6-6i\sqrt{3})(-6+6i\sqrt{3}) = 144.
\end{align*}
Thus,
Now, we have
\begin{align*}
\prod_{n=1}^7(a_n^2-1)&=\prod_{n=1}^7(a_n-1)\prod_{n-1}^7(a_n+1)\\
&=(-f(1))(-f(-1))\\
&=f(1)f(-1)\\
&=33\cdot1 = 33.
\end{align*}
Substituting this into
we have
~SMO_Team