2024 SSMO Relay Round 2 Problems/Problem 3
Problem
Let A point
is randomly chosen inside the square with vertices
and
. Find the perimeter of the set
containing all points
for which
Solution
Let We have
\begin{align*}
\sqrt{x^2+y^2}+\sqrt{(X-T)^2+(y-T)^2}&\ge\sqrt{x^2+(y-T)^2}+\sqrt{(x-T)^2+y^2}\implies\\
x^2+y^2+(x-T)^2+(y-T^2)&+2\sqrt{x^2+y^2}\cdot\sqrt{(X-T)^2+(y-T)^2}\ge\\ x^2+(y-T)^2+(x-T)^2&+y^2+2\sqrt{x^2+(y-T)^2}\cdot\sqrt{(x-T)^2+y^2}\implies\\
(x^2+y^2)((x-T)^2+(y-T)^2)&\ge(x^2+(y-T)^2)(y^2+(x-T)^2)\implies\\
y^2(x-T)^2+(x^2)(y-T)^2&\ge x^2y^2+(x-T)^2(y-T)^2\implies\\
(x^2-(x-T)^2)(y^2-(y-T)^2)&\le0\implies\\
(T^2-2xT)(T^2-2yT)&\le0\implies\\
\left(x-\frac{T}{2}\right)\left(y-\frac{T}{2}\right)\le0.
\end{align*}
So, if we split the square into four smaller squares by drawing lines
the set
is equivalent to the bottom left and top right squares. Thus, the perimeter of the set
is equivalent to
~SMO_Team