2004 AMC 12A Problems/Problem 19
Problem 19
Circles and
are externally tangent to each other, and internally tangent to circle
. Circles
and
are congruent. Circle
has radius
and passes through the center of
. What is the radius of circle
?
Solution
![[asy] unitsize(20mm); pair A=(0,1),B=(-8/9,-2/3),C=(8/9,-2/3),D=(0,0), E=(0,-2/3); draw(Circle(D,2)); draw(Circle(A,1)); draw(Circle(B,8/9)); draw(Circle(C,8/9)); draw(A--B--C--A); draw(B--D--C); draw(A--E); dot(A);dot(B);dot(C);dot(D);dot(E); label("\(D\)", D,N); label("\(A\)", A,N); label("\(B\)", B,W); label("\(C\)", C,E); label("\(E\)", E,S); label("\(1\)",(-.4,.7)); label("\(1\)",(0,.5),E); label("\(r\)", (-.8,-.1)); label("\(r\)", (-4/9,-2/3),S); label("\(h\)", (0,-1/3),E); [/asy]](http://latex.artofproblemsolving.com/1/5/a/15a898fdbe29de1dab060b96b07d30a5b5fb17ab.png)
Note that since
is the center of the larger circle of radius
. Using the Pythagorean Theorem on
,
Now using the Pythagorean Theorem on ,
Substituting ,
See Also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |