1993 USAMO Problems/Problem 2
Contents
Problem 2
Let 
 be a convex quadrilateral such that diagonals 
 and 
 intersect at right angles, and let 
 be their intersection. Prove that the reflections of 
 across 
, 
, 
, 
 are concyclic. 
Solution
Diagram
![]()  | 
Work
Let 
, 
, 
, 
 be the foot of the altitute from point 
 of 
, 
, 
, 
.
Note that reflection of 
 over the 4 lines is 
 with a scale of 
 with center 
. Thus, if 
 is cyclic, then the reflections are cyclic.
 is right angle and so is 
. Thus, 
 is cyclic with 
 being the diameter of the circumcircle.
Follow that, 
 because they inscribe the same angle.
Similarly 
,  
,  
.
Futhermore, ![]()
.
Thus, 
 and 
 are supplementary and follows that, 
 is cyclic.
![]()
Resources
| 1993 USAMO (Problems • Resources) | ||
| Preceded by Problem 3  | 
Followed by Problem 5  | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
![[asy] import olympiad; defaultpen(0.8pt+fontsize(12pt)); pair E; E=(0,0); label('$E$',E,N); pair A,B,C,D; A=(10,0); B=(0,13); C=(-13,0); D=(0,-11); draw(A--B--C--D--cycle,blue); label('$A$',A,E); label('$B$',B,N); label('$C$',C,W); label('$D$',D,S); pair T,R,S,Q; T=reflect(A, B)*E; R=reflect(C, B)*E; S=reflect(C, D)*E; Q=reflect(A, D)*E;  pair W,X,Y,Z; W=extension(A,D,E,Q); X=extension(A,B,E,T); Y=extension(C,B,E,R); Z=extension(C,D,E,S); draw(W--X--Y--Z--cycle,red);   label('$X$',X,NE); label('$Y$',Y,NW); label('$Z$',Z, SW); label('$W$',W,SE);  [/asy]](http://latex.artofproblemsolving.com/3/b/1/3b151545092b3a4ff38f44b608ec7540ae71e0a5.png)