User:Lightest
For any information, please contact me at MATHTAM@gmail.com
Contents
Notes
USAJMO Problem 1
Given a triangle , let
and
be points on segments
and
, respectively, such that
. Let
and
be distinct points on segment
such that
lies between
and
,
, and
. Prove that
,
,
,
are concyclic (in other words, these four points lie on a circle).
Problem 2
Find all integers such that among any
positive real numbers
,
,
,
with
there exist three that are the side lengths of an acute triangle.
Problem 3
Let ,
,
be positive real numbers. Prove that
Problem 4
Let be an irrational number with
, and draw a circle in the plane whose circumference has length 1. Given any integer
, define a sequence of points
,
,
,
as follows. First select any point
on the circle, and for
define
as the point on the circle for which the length of arc
is
, when travelling counterclockwise around the circle from
to
. Supose that
and
are the nearest adjacent points on either side of
. Prove that
.
Solution outline
Use mathematical induction. For it is true because one point can't be closest to
in both ways, and that
. Suppose that for some
, the nearest adjacent points
and
on either side of
satisfy
. Then consider the nearest adjacent points
and
on either side of
. It is by the assumption of the nearness we can see that either
,
, or one of
or
equals two
. Let's consider the following two cases.
(i) Suppose .
Since the length of the arc is
(where
equals to
subtracted by the greatest integer not exceeding
) and length of the arc
is
, we now consider a point
which is defined by
traveling clockwise on the circle such that the length of arc
is
. We claim that either
is on the interior of the arc
or on the interior of the arc
. Algebraically, it is equivalent to either
or
. Suppose the former fails, i.e.
. Then suppose
and
, where
,
are integers and
. We now have
and
Therefore
is either closer to
on the
side, or closer to
on the
side. Hence
or
is
, therefore
(ii) Suppose
Then either
when
and
, or
when one of
or
is
.
In either case, is true.
Problem 5
For distinct positive integers ,
, define
to be the number of integers
with
such that the remainder when
divided by 2012 is greater than that of
divided by 2012. Let
be the minimum value of
, where
and
range over all pairs of distinct positive integers less than 2012. Determine
.
Problem 6
Let be a point in the plane of triangle
, and
a line passing through
. Let
,
,
be the points where the reflections of lines
,
,
with respect to
intersect lines
,
,
, respectively. Prove that
,
,
are collinear.