2009 USAMO Problems/Problem 6
Revision as of 13:44, 4 July 2013 by Nathan wailes (talk | contribs)
Problem
Let be an infinite, nonconstant sequence of rational numbers, meaning it is not the case that
Suppose that
is also an infinite, nonconstant sequence of rational numbers with the property that
is an integer for all
and
. Prove that there exists a rational number
such that
and
are integers for all
and
.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
2009 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.