2004 AMC 10B Problems/Problem 18
Contents
Problem
In the right triangle
, we have
,
, and
. Points
,
, and
are located on
,
, and
, respectively, so that
,
, and
. What is the ratio of the area of
to that of
?
Solution 1
Let
. Because
is divided into four triangles,
.
Because the area of $\triangleXYZ = \frac12 \cdot XY \cdot XZ \cdot \sin(\angle X), \frac12 \cdot 12 \cdot 16 = \frac12 \cdot 9 \cdot 4 + \frac12 \cdot 3 \cdot 15 \cdot \sin(\angle A) + \frac12 \cdot 5 \cdot 12 \cdot \sin(\angle E) + x$ (Error compiling LaTeX. Unknown error_msg).
and
, so
.
, so
.
Solution 2
First of all, note that
, and therefore
.
Draw the height from
onto
as in the picture below:
Now consider the area of
. Clearly the triangles
and
are similar, as they have all angles equal. Their ratio is
, hence
.
Now the area
of
can be computed as
=
.
Similarly we can find that
as well.
Hence
, and the answer is
.
See also
| 2004 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 17 |
Followed by Problem 19 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.