1952 AHSME Problems/Problem 35

Problem

With a rational denominator, the expression $\frac {\sqrt {2}}{\sqrt {2} + \sqrt {3} - \sqrt {5}}$ is equivalent to:

$\textbf{(A)}\ \frac {3 + \sqrt {6} + \sqrt {15}}{6} \qquad \textbf{(B)}\ \frac {\sqrt {6} - 2 + \sqrt {10}}{6} \qquad \textbf{(C)}\ \frac{2+\sqrt{6}+\sqrt{10}}{10} \qquad\\ \textbf{(D)}\ \frac {2 + \sqrt {6} - \sqrt {10}}{6} \qquad \textbf{(E)}\ \text{none of these}$

Solution

First let $k=\sqrt2+\sqrt3$. Then our original expression becomes $\frac{\sqrt2}{k-\sqrt5}$. Rationalizing the denominator, we have: \begin{align*} \frac{\sqrt2}{k-\sqrt5}&=\frac{\sqrt2(k+\sqrt5)}{(k-\sqrt5)(k+\sqrt5)}=\frac{\sqrt{2}k+\sqrt{10}}{k^2-(\sqrt5)^2}=\frac{\sqrt{2}k+\sqrt{10}}{k^2-5} \\ &=\frac{\sqrt{2}(\sqrt{2}+\sqrt{3})+\sqrt{10}}{(\sqrt{2}+\sqrt{3})^2-5}= \frac{2+\sqrt{6}+\sqrt{10}}{2\sqrt{6}+2+3-5}=\frac{2+\sqrt6+\sqrt{10}}{2\sqrt{6}} \\ &=\frac{2\sqrt{6}+6+\sqrt{60}}{12}=\boxed{\textbf{(A) }\frac{3+\sqrt{6}+\sqrt{15}}{6}}. \end{align*}

(reworked by Technodoggo)

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 34
Followed by
Problem 36
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png