1972 AHSME Problems/Problem 32

Problem

[asy] real t=pi/12;real u=8*t; real cu=cos(u);real su=sin(u); draw(unitcircle); draw((cos(-t),sin(-t))--(cos(13*t),sin(13*t))); draw((cu,su)--(cu,-su)); label("A",(cos(13*t),sin(13*t)),W); label("B",(cos(-t),sin(-t)),E); label("C",(cu,su),N); label("D",(cu,-su),S); label("E",(cu,sin(-t)),NE); label("2",((cu-1)/2,sin(-t)),N); label("6",((cu+1)/2,sin(-t)),N); label("3",(cu,(sin(-t)-su)/2),E); //Credit to Zimbalono for the diagram[/asy]

Chords $AB$ and $CD$ in the circle above intersect at E and are perpendicular to each other. If segments $AE, EB$, and $ED$ have measures $2, 3$, and $6$ respectively, then the length of the diameter of the circle is

$\textbf{(A) }4\sqrt{5}\qquad \textbf{(B) }\sqrt{65}\qquad \textbf{(C) }2\sqrt{17}\qquad \textbf{(D) }3\sqrt{7}\qquad  \textbf{(E) }6\sqrt{2}$

Solution

Using the chord theorem we can immediately solve for $\overline {CE}$ which will help us. The chord theorem states that if two chords, $\overline {AB}$ and $\overline {CD}$, intersect at lets say $E$, then $\overline {AE} \cdot \overline {EB}=\overline {CE} \cdot \overline {ED}$. Now that we know this we can label length $\overline {CE}$ as $\eta$. We now have the equation $3\eta=2\cdot6\implies3\eta=12\implies\eta=4$. We now know the chord lengths $7$ and $8$. We now label the center of the circle as $O$. If the circle was on the graph, with $O$ being right on the origin, then make a $x=0$ line cutting through the center. This bisects chord $AB$ at point $M$. This means $\overline {AM}=4$ and $\overline {EM}=2$ If we now draw a "$y=0$" line which bisects chord $CD$ at point $N$ making $\overline {CN}=\tfrac{7}{2}$. If we now move up $\overline {EM}$ to $\overline {ON}$ then we can find the radius($\overline {CO}$) using Pythagorean Theorem.

$\sqrt{{\overline {EM}}^2+{\overline {ON}}^2}=r$

$\sqrt{2^2+(\tfrac{7}{2})^2}$

$\sqrt{4+\frac{49}{4}}$

$\sqrt{\frac{65}{4}}$

$\frac{\sqrt{65}}{2}=r$

Now that we have $r$, the diameter is just two times of that, so $\boxed{\textbf{(B)}\sqrt{65}}$

~AM24