1973 Canadian MO Problems/Problem 1
Problem
Solve the simultaneous inequalities,
and
; i.e. find a single inequality equivalent to the two simultaneous inequalities.
What is the greatest integer that satisfies both inequalities
and
.
Give a rational number between
and
.
Express
as a product of two integers neither of which is an integral multiple of
.
Without the use of logarithm tables evaluate
.
Solution
Since from the second inequality
, our solution is
.
With these two inequalities, we see that the greatest integer satisfying the requirements is
.
. Thus, a rational number in between
and
is
Thus,
See also
| 1973 Canadian MO (Problems) | ||
| Preceded by 1973 Canadian MO Problems |
1 • 2 • 3 • 4 • 5 | Followed by Problem 2 |