1981 AHSME Problems/Problem 12

Problem 12

If $p$, $q$, and $M$ are positive numbers and $q<100$, then the number obtained by increasing $M$ by $p\%$ and decreasing the result by $q\%$ exceeds $M$ if and only if

$\textbf{(A)}\ p>q \qquad\textbf{(B)}\ p>\dfrac{q}{100-q}\qquad\textbf{(C)}\ p>\dfrac{q}{1-q}\qquad \textbf{(D)}\ p>\dfrac{100q}{100+q}\qquad\textbf{(E)}\ p>\dfrac{100q}{100-q}$

Solution 1

The goal is to find when $M\left(1+\frac{p}{100}\right)\left(1-\frac{q}{100}\right) > M$. Isolate $p$ as follows:

\[\left(1+\frac{p}{100}\right)\left(1-\frac{q}{100}\right) > 1\]

\[\left(\frac{100+p}{100}\right)\left(\frac{100-q}{100}\right) > 1\]

\[\frac{(100+p)(100-q)}{10000} > 1\]

\[100+p > \frac{10000}{100-q}\]

\[p > \frac{10000}{100-q} - 100 = \boxed{(\textbf{E})\ \frac{100q}{100-q}}\]

-j314andrews

Solution 2 (Answer Choices)

Choice A is incorrect. If $(M, p, q) = (100, 50, 40)$, then $p > q$, but $M$ will not increase, as $100 \cdot 1.5 \cdot 0.6 = 90$.

Choice B is incorrect. If $(M, p, q) = (100, 50, 50)$, then $p > \frac{q}{100-q}$, but $M$ will not increase, as $100 \cdot 1.5 \cdot 0.5 = 75$.

Choice C is incorrect. If $(M, p, q) = (100, 50, 50)$, then $p > \frac{q}{1-q}$, but $M$ will not increase, as $100 \cdot 1.5 \cdot 0.5 = 75$.

Choice D is incorrect. If $(M, p, q) = (100, 100, 60)$, then $p > \frac{100q}{100+q}$, but $M$ will not increase, as $100 \cdot 2 \cdot 0.4 = 80$.

By process of elimination, $\boxed{(\textbf{E})\ \dfrac{100q}{100-q}}$ must be correct.

-Arcticturn, edited by j314andrews

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png